Background: Long-term use of doxorubicin (DOX) is limited by cumulative dose-dependent cardiotoxicity.
Objectives: Identify plasma extracellular vesicle (EV)-associated microRNAs (miRNAs) as a biomarker for cardiotoxicity in dogs by correlating changes with cardiac troponin I (cTnI) concentrations and, echocardiographic and histologic findings.
Animals: Prospective study of 9 client-owned dogs diagnosed with sarcoma and receiving DOX single-agent chemotherapy (total of 5 DOX treatments). Dogs with clinically relevant metastatic disease, preexisting heart disease, or breeds predisposed to cardiomyopathy were excluded.
Methods: Serum concentration of cTnI was monitored before each treatment and 1 month after the treatment completion. Echocardiography was performed before treatments 1, 3, 5, and 1 month after completion. The EV-miRNA was isolated and sequenced before treatments 1 and 3, and 1 month after completion.
Results: Linear mixed model analysis for repeated measurements was used to evaluate the effect of DOX. The miR-107 (P = .03) and miR-146a (P = .02) were significantly downregulated whereas miR-502 (P = .02) was upregulated. Changes in miR-502 were significant before administration of the third chemotherapeutic dose. When stratifying miRNA expression for change in left ventricular ejection fraction, upregulation of miR-181d was noted (P = .01). Serum concentration of cTnI changed significantly but only 1 month after treatment completion, and concentrations correlated with left ventricular ejection fraction and left ventricular internal dimension in diastole.
Conclusion and clinical significance: Downregulation of miR-502 was detected before significant changes in cTnI concentrations or echocardiographic parameters. Further validation using a larger sample size will be required.
Keywords: chemotherapy; echocardiogram; ejection fraction; hemangiosarcoma; troponin.
© 2020 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.