Can gene-inactivating mutations lead to evolutionary novelty?

Curr Biol. 2020 May 18;30(10):R465-R471. doi: 10.1016/j.cub.2020.03.072.

Abstract

Evolutionary novelty is difficult to define. It typically involves shifts in organismal or biochemical phenotypes that can be seen as qualitative as well as quantitative changes. In laboratory-based experimental evolution of novel phenotypes and the human domestication of crops, the majority of the mutations that lead to adaptation are loss-of-function mutations that impair or eliminate the function of genes rather than gain-of-function mutations that increase or qualitatively alter the function of proteins. Here, I speculate that easier access to loss-of-function mutations has led them to play a major role in the adaptive radiations that occur when populations have access to many unoccupied ecological niches. I discuss five possible objections to this claim: that genes can only survive if they confer benefits to the organisms that bear them, antagonistic pleiotropy, the importance of pre-existing genetic variation in populations, the danger that adaptation by breaking genes will, over long times, cause organisms to run out of genes, and the recessive nature of most loss-of-function mutations.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adaptation, Physiological / genetics*
  • Animals
  • Biological Evolution*
  • Ecosystem*
  • Humans
  • Loss of Function Mutation / genetics*
  • Plants / genetics