A Secure Multi-Party Computation Protocol for Time-To-Event Analyses

Stud Health Technol Inform. 2020 Jun 16:270:8-12. doi: 10.3233/SHTI200112.

Abstract

The cryptographic method Secure Multi-Party Computation (SMPC) could facilitate data sharing between health institutions by making it possible to perform analyses on a "virtual data pool", providing an integrated view of data that is actually distributed - without any of the participants having to disclose their private data. One drawback of SMPC is that specific cryptographic protocols have to be developed for every type of analysis that is to be performed. Moreover, these protocols have to be optimized to provide acceptable execution times. As a first step towards a library of efficient implementations of common methods in health data sciences, we present a novel protocol for efficient time-to-event analysis. Our implementation utilizes a common technique called garbled circuits and was implemented using a widespread SMPC programming framework. We further describe optimizations that we have developed to reduce the execution times of our protocol. We experimentally evaluated our solution by computing Kaplan-Meier estimators over a vertically distributed dataset while measuring performance. By comparing the SMPC results with a conventional analysis on pooled data, we show that our approach is practical and scalable.

Keywords: healthcare data; operational confidentiality of information; patient privacy; secure multi-party computation.

MeSH terms

  • Computer Security*
  • Humans
  • Information Dissemination*
  • Medical Informatics