Purpose: To implement the time-resolved relaxometry PEPTIDE technique into a diffusion acquisition to provide self-navigated, distortion- and blurring-free diffusion imaging that is robust to motion, while simultaneously providing T2 and mapping.
Theory and methods: The PEPTIDE readout was implemented into a spin-echo diffusion acquisition, enabling reconstruction of a time-series of T2 - and -weighted images, free from conventional echo planar imaging (EPI) distortion and blurring, for each diffusion-encoding. Robustness of PEPTIDE to motion and shot-to-shot phase variation was examined through a deliberate motion-corrupted diffusion experiment. Two diffusion-relaxometry in vivo brain protocols were also examined: (1)1 × 1 × 3 mm3 across 32 diffusion directions in 20 min, (2)1.5 × 1.5 × 3.0 mm3 across 6 diffusion-weighted images in 3.4 min. T2 , , and diffusion parameter maps were calculated from these data. As initial exploration of the rich diffusion-relaxometry data content for use in multi-compartment modeling, PEPTIDE data were acquired of a gadolinium-doped asparagus phantom. These datasets contained two compartments with different relaxation parameters and different diffusion orientation properties, and T2 relaxation variations across these diffusion directions were explored.
Results: Diffusion-PEPTIDE showed the capability to provide high quality diffusion images and T2 and maps from both protocols. The reconstructions were distortion-free, avoided potential resolution losses exceeding 100% in equivalent EPI acquisitions, and showed tolerance to nearly 30° of rotational motion. Expected variation in T2 values as a function of diffusion direction was observed in the two-compartment asparagus phantom (P < .01), demonstrating potential to explore diffusion-PEPTIDE data for multi-compartment modeling.
Conclusions: Diffusion-PEPTIDE provides highly robust diffusion and relaxometry data and offers potential for future applications in diffusion-relaxometry multi-compartment modeling.
Keywords: blurring-free; diffusion imaging; diffusion-relaxometry; distortion-free; motion-robust; multi-shot.
© 2020 International Society for Magnetic Resonance in Medicine.