ZAP-70 constitutively regulates gene expression and protein synthesis in chronic lymphocytic leukemia

Blood. 2021 Jul 1;137(26):3629-3640. doi: 10.1182/blood.2020009960.

Abstract

The expression of ZAP-70 in a subset of chronic lymphocytic leukemia (CLL) patients strongly correlates with a more aggressive clinical course, although the exact underlying mechanisms remain elusive. The ability of ZAP-70 to enhance B-cell receptor (BCR) signaling, independently of its kinase function, is considered to contribute. We used RNA-sequencing and proteomic analyses of primary cells differing only in their expression of ZAP-70 to further define how ZAP-70 increases the aggressiveness of CLL. We identified that ZAP-70 is directly required for cell survival in the absence of an overt BCR signal, which can compensate for ZAP-70 deficiency as an antiapoptotic signal. In addition, the expression of ZAP-70 regulates the transcription of factors regulating the recruitment and activation of T cells, such as CCL3, CCL4, and IL4I1. Quantitative mass spectrometry of double-cross-linked ZAP-70 complexes further demonstrated constitutive and direct protein-protein interactions between ZAP-70 and BCR-signaling components. Unexpectedly, ZAP-70 also binds to ribosomal proteins, which is not dependent on, but is further increased by, BCR stimulation. Importantly, decreased expression of ZAP-70 significantly reduced MYC expression and global protein synthesis, providing evidence that ZAP-70 contributes to translational dysregulation in CLL. In conclusion, ZAP-70 constitutively promotes cell survival, microenvironment interactions, and protein synthesis in CLL cells, likely to improve cellular fitness and to further drive disease progression.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Female
  • Gene Expression Regulation, Leukemic*
  • Humans
  • Leukemia, Lymphocytic, Chronic, B-Cell / genetics
  • Leukemia, Lymphocytic, Chronic, B-Cell / metabolism*
  • Male
  • Neoplasm Proteins / genetics
  • Neoplasm Proteins / metabolism*
  • Protein Biosynthesis*
  • Tumor Cells, Cultured
  • ZAP-70 Protein-Tyrosine Kinase / genetics
  • ZAP-70 Protein-Tyrosine Kinase / metabolism*

Substances

  • Neoplasm Proteins
  • ZAP-70 Protein-Tyrosine Kinase
  • ZAP70 protein, human