A 174.7-dB FoM, 2nd-Order VCO-Based ExG-to-Digital Front-End Using a Multi-Phase Gated-Inverted-Ring Oscillator Quantizer

IEEE Trans Biomed Circuits Syst. 2021 Dec;15(6):1283-1294. doi: 10.1109/TBCAS.2021.3133531. Epub 2022 Feb 17.

Abstract

This paper presents a second-order voltage-controlled oscillator (VCO)-based front-end for the direct digitization of biopotential signals. This work addresses the non-linearity of VCO-based ADC architectures with a mismatch resilient, multi-phase quantizer, a gated-inverted-ring oscillator (GIRO), achieving >110-dB SFDR. Leveraging the time-domain encoding of the first integrator, the ADC's power is dynamically scaled with the input amplitude enabling up to 35% power savings in the absence of motion artifacts or interference. An auxiliary input-impedance booster increases the ADC's input impedance to 50 MΩ across the entire bandwidth. Fabricated in a 65-nm CMOS process, this ADC achieves 92.3-dB SNDR in a 1 kHz BW while consuming 5.8 µW for a 174.7 dB Schreier FoM.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amplifiers, Electronic*
  • Equipment Design