A Comparison of Global Brain Volumetrics Obtained from CT versus MRI Using 2 Publicly Available Software Packages

AJNR Am J Neuroradiol. 2022 Feb;43(2):245-250. doi: 10.3174/ajnr.A7403.

Abstract

Background and purpose: Brain volumetrics have historically been obtained from MR imaging data. However, advances in CT, along with refined publicly available software packages, may support tissue-level segmentations of clinical CT images. Here, brain volumetrics obtained by applying two publicly available software packages to paired CT-MR data are compared.

Materials and methods: In a group of patients (n = 69; 35 men) who underwent both MR imaging and CT brain scans within 12 months of one another, brain tissue was segmented into WM, GM, and CSF compartments using 2 publicly available software packages: Statistical Parametric Mapping and FMRIB Software Library. A subset of patients with repeat imaging sessions was used to assess the repeatability of each segmentation. Regression analysis and Bland-Altman limits of agreement were used to determine the level of agreement between segmented volumes.

Results: Regression analysis showed good agreement between volumes derived from MR images versus those from CT. The correlation coefficients between the 2 methods were 0.93 and 0.98 for Statistical Parametric Mapping and FMRIB Software Library, respectively. Differences between global volumes were significant (P < .05) for all volumes compared within a given segmentation pipeline. WM bias was 36% (SD, 38%) and 18% (SD, 18%) for Statistical Parametric Mapping and FMRIB Software Library, respectively, and 10% (SD, 30%) and 6% (SD, 20%) for GM (bias ± limits of agreement), with CT overestimating WM and underestimating GM compared with MR imaging. Repeatability was good for all segmentations, with coefficients of variation of <10% for all volumes.

Conclusions: The repeatability of CT segmentations using publicly available software is good, with good correlation with MR imaging. With careful study design and acknowledgment of measurement biases, CT may be a viable alternative to MR imaging in certain settings.

MeSH terms

  • Brain* / diagnostic imaging
  • Humans
  • Magnetic Resonance Imaging* / methods
  • Male
  • Neuroimaging
  • Software
  • Tomography, X-Ray Computed / methods