RT-PCR/MALDI-TOF Diagnostic Target Performance Reflects Circulating SARS-CoV-2 Variant Diversity in New York City

J Mol Diagn. 2022 Jul;24(7):738-749. doi: 10.1016/j.jmoldx.2022.04.003. Epub 2022 May 4.

Abstract

As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to circulate, multiple variants of concern have emerged. New variants pose challenges for diagnostic platforms because sequence diversity can alter primer/probe-binding sites (PBSs), causing false-negative results. The MassARRAY SARS-CoV-2 Panel (Agena Bioscience) uses RT-PCR and mass spectrometry to detect five multiplex targets across N and ORF1ab genes. Herein, we use a data set of 256 SARS-CoV-2-positive specimens collected between April 11, 2021, and August 28, 2021, to evaluate target performance with paired sequencing data. During this time frame, two targets in the N gene (N2 and N3) were subject to the greatest sequence diversity. In specimens with N3 dropout, 69% harbored the Alpha-specific A28095U polymorphism that introduces a 3'-mismatch to the N3 forward PBS and increases risk of target dropout relative to specimens with 28095A (relative risk, 20.02; 95% CI, 11.36 to 35.72; P < 0.0001). Furthermore, among specimens with N2 dropout, 90% harbored the Delta-specific G28916U polymorphism that creates a 3'-mismatch to the N2 probe PBS and increases target dropout risk (relative risk, 11.92; 95% CI, 8.17 to 14.06; P < 0.0001). These findings highlight the robust capability of MassARRAY SARS-CoV-2 Panel target results to reveal circulating virus diversity, and they underscore the power of multitarget design to capture variants of concern.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • COVID-19* / diagnosis
  • COVID-19* / epidemiology
  • Humans
  • New York City / epidemiology
  • Reverse Transcriptase Polymerase Chain Reaction
  • SARS-CoV-2* / genetics
  • Sensitivity and Specificity
  • Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization

Supplementary concepts

  • SARS-CoV-2 variants