BOSO: A novel feature selection algorithm for linear regression with high-dimensional data

PLoS Comput Biol. 2022 May 31;18(5):e1010180. doi: 10.1371/journal.pcbi.1010180. eCollection 2022 May.

Abstract

With the frenetic growth of high-dimensional datasets in different biomedical domains, there is an urgent need to develop predictive methods able to deal with this complexity. Feature selection is a relevant strategy in machine learning to address this challenge. We introduce a novel feature selection algorithm for linear regression called BOSO (Bilevel Optimization Selector Operator). We conducted a benchmark of BOSO with key algorithms in the literature, finding a superior accuracy for feature selection in high-dimensional datasets. Proof-of-concept of BOSO for predicting drug sensitivity in cancer is presented. A detailed analysis is carried out for methotrexate, a well-studied drug targeting cancer metabolism.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Humans
  • Linear Models
  • Machine Learning
  • Neoplasms* / drug therapy
  • Neoplasms* / metabolism