Although pharmaceutical products undergo clinical trials to profile efficacy and safety, some adverse drug reactions (ADRs) are only discovered after release to market. Post-market drug safety surveillance - pharmacovigilance - leverages information from various sources to proactively identify such ADRs. Clinical notes are one source of observational data that could assist this process, but their inherent complexity can obfuscate possible ADR signals. In previous research, embeddings trained on observational reports have improved detection of such signals over commonly used statistical measures. Moreover, neural embedding methods which further encode juxtapositional information have shown promise on analogical retrieval tasks, suggesting proximity-based alternatives to document-level modeling for signal detection. This work uses natural language processing and locality sensitive neural embeddings to increase ADR signal recovery from clinical notes, with AUCs of ~0.63-0.71. Constituting a ~50% increase over baselines, our method sets the state-of-the-art for these reference standards when solely leveraging clinical notes.
©2022 AMIA - All rights reserved.