Constructing three-dimensional N-doped carbon coating silicon/iron silicide nanoparticles cross-linked by carbon nanotubes as advanced anode materials for lithium-ion batteries

J Colloid Interface Sci. 2023 Jan;629(Pt B):908-916. doi: 10.1016/j.jcis.2022.09.143. Epub 2022 Oct 2.

Abstract

Silicon (Si), have been considered as promising anode material for lithium-ion batteries (LIBs), due to its high theoretical specific capacity of 4200 mAh g-1. However, the poor electrical conductivity and large volume change during lithiation/delithiation process, resulting in poor cycling stability, and seriously hindered the practical application in LIBs. Herein, a multiple Si/FexSiy@NC/CNTs composite is synthesized and investigated as advanced anode materials for LIBs via a simple one-step method. Such multiple Si/FexSiy@NC/CNTs composite has several merits including the FexSiy can not only accommodate the huge volume change of Si nanoparticles, but also enhance the conductivity upon discharge/charge process. Furthermore, the in-situ growth CNTs may help establish a long-range conductivity, and the Nitrogen-doped carbon (NC) layer can further improve the conductivity of Si, as well as inhibit the direct contract between electrolyte and Si during cycling process. Accordingly, the Si/FexSiy@NC/CNTs-1 exhibits excellent cycling stability (a high capacity of 994.4 mAh g-1 is maintained at 1.0 A g-1 after 600cycles) and outstanding rate capability (a suitable capacity of 441.7 mAh g-1 was obtained even at 5.0 A g-1). Moreover, the assembled full cell can achieve a capacity of 141.4 mAh g-1 after 65 cycles at 1.0C, exhibiting outstanding cycling stability. This work provides a prospective way for the commercial production of high-performance Si-based anode materials for LIBs.

Keywords: Anode materials; CNTs; Iron silicide; Lithium-ion batteries; Silicon.