Missing values caused by the limit of detection or quantification (LOD/LOQ) were widely observed in mass spectrometry (MS)-based omics studies and could be recognized as missing not at random (MNAR). MNAR leads to biased statistical estimations and jeopardizes downstream analyses. Although a wide range of missing value imputation methods was developed for omics studies, a limited number of methods were designed appropriately for the situation of MNAR. To facilitate MS-based omics studies, we introduce GSimp, a Gibbs sampler-based missing value imputation approach, to deal with left-censor missing values in MS-proteomics datasets. In this book, we explain the MNAR and elucidate the usage of GSimp for MNAR in detail.
Keywords: Gibbs sampler; Imputation; Left censor; Mass spectrometry; Missing not at random; Proteomics.
© 2023. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.