miR-148a-3p and DDX6 functional link promotes survival of myeloid leukemia cells

Blood Adv. 2023 Aug 8;7(15):3846-3861. doi: 10.1182/bloodadvances.2022008123.

Abstract

Regulation of gene expression at the RNA level is an important regulatory mechanism in cancer. However, posttranscriptional molecular pathways underlying tumorigenesis remain largely unexplored. In this study, we uncovered a functional axis consisting of microRNA (miR)-148a-3p, RNA helicase DDX6, and its downstream target thioredoxin-interacting protein (TXNIP) in acute myeloid leukemia (AML). Using a DROSHA-knockout cell system to evaluate miR-mediated gene expression control, we comprehensively profiled putative transcripts regulated by miR-148a-3p and identified DDX6 as a direct target of miR-148a-3p in AML cells. DDX6 depletion induced cell cycle arrest, apoptosis, and differentiation, although delaying leukemia development in vivo. Genome-wide assessment of DDX6-binding transcripts and gene expression profiling of DDX6-depleted cells revealed TXNIP, a tumor suppressor, as the functional downstream target of DDX6. Overall, our study identified DDX6 as a posttranscriptional regulator that is required for AML survival. We proposed the regulatory link between miR-148a-3p and DDX6 as a potential therapeutic target in leukemia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Differentiation / physiology
  • DEAD-box RNA Helicases / genetics
  • Genes, Tumor Suppressor
  • Humans
  • Leukemia, Myeloid, Acute* / genetics
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • Proto-Oncogene Proteins / genetics

Substances

  • MicroRNAs
  • DDX6 protein, human
  • Proto-Oncogene Proteins
  • DEAD-box RNA Helicases