The Significance of NAD+ Biosynthesis Alterations in Acute Kidney Injury

Semin Nephrol. 2022 May;42(3):151287. doi: 10.1016/j.semnephrol.2022.10.013. Epub 2022 Nov 18.

Abstract

Acute kidney injury (AKI) is a serious and highly prevalent disease, yet only supportive treatment is available. Nicotinamide adenine dinucleotide (NAD+) is a cofactor necessary for adenosine triphosphate (ATP) production and cell survival. Changes in renal NAD+ biosynthesis and energy utilization are features of AKI. Targeting NAD+ as an AKI therapy shows promising potential. However, the pursuit of NAD+-based treatments requires deeper understanding of the unique drivers and effects of the NAD+ biosynthesis derangements that arise in AKI. This article summarizes the NAD+ biosynthesis alterations in the kidney in AKI, chronic disease, and aging. To enhance this understanding, we explore instances of NAD+ biosynthesis alterations outside the kidney in inflammation, pregnancy, and cancer. In doing so, we seek to highlight that the different NAD+ biosynthesis pathways are not interconvertible and propose that the way in which NAD+ is synthesized may be just as important as the NAD+ produced.

Keywords: AKI; NAD+; NAD+ biosynthesis; cancer; metabolism; pregnancy.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acute Kidney Injury* / metabolism
  • Adenosine Triphosphate / metabolism
  • Humans
  • Kidney / metabolism
  • NAD* / metabolism

Substances

  • NAD
  • Adenosine Triphosphate