Physicochemical properties and microstructure of gluten protein, and the structural characteristics of steamed bread with 30 % potato pulp (SBPP) were investigated by ultrasonic treatments. Results showed that 400 W ultrasonic treatment significantly (P < 0.05) increased the combination of water and substrate in the dough with 30 % potato pulp (DPP). The contents of wet gluten, free sulfhydryl (SH), and disulfide bond (SS) were influenced by ultrasonic treatment. Moreover, UV-visible and fluorescence spectroscopy demonstrated that the conformation of gluten protein was changed by ultrasonic treatment (400 W). Fourier transform infrared (FT-IR) illustrated that the β-sheet content was significantly (P < 0.05) increased (42 %) after 400 W ultrasonic treatment, and the surface hydrophobicity of gluten protein in SBPP increased from 1225.37 (0 W ultrasonic treatment) to 4588.74 (400 W ultrasonic treatment). Ultrasonic treatment facilitated the generation of a continuous gluten network and stabilized crumb structure, further increased the specific volume and springiness of SBPP to 18.9 % and 6.9 %, respectively. Those findings suggested that ultrasonic treatment would be an efficient method to modify gluten protein and improve the quality of SBPP.
Keywords: Gluten; Potato pulp; Steamed bread; Structural characteristics; Ultrasonic treatment.
Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved.