Ramping down a clinical 3 T scanner: a journey into MRI and MRS at 0.75 T

MAGMA. 2023 Jul;36(3):355-373. doi: 10.1007/s10334-023-01089-9. Epub 2023 May 12.

Abstract

Object: Lower-field MR is reemerging as a viable, potentially cost-effective alternative to high-field MR, thanks to advances in hardware, sequence design, and reconstruction over the past decades. Evaluation of lower field strengths, however, is limited by the availability of lower-field systems on the market and their considerable procurement costs. In this work, we demonstrate a low-cost, temporary alternative to purchasing a dedicated lower-field MR system.

Materials and methods: By ramping down an existing clinical 3 T MRI system to 0.75 T, proton signals can be acquired using repurposed 13C transmit/receive hardware and the multi-nuclei spectrometer interface. We describe the ramp-down procedure and necessary software and hardware changes to the system.

Results: Apart from presenting system characterization results, we show in vivo examples of cardiac cine imaging, abdominal two- and three-point Dixon-type water/fat separation, water/fat-separated MR Fingerprinting, and point-resolved spectroscopy. In addition, the ramp-down approach allows unique comparisons of, e.g., gradient fidelity of the same MR system operated at different field strengths using the same receive chain, gradient coils, and amplifiers.

Discussion: Ramping down an existing MR system may be seen as a viable alternative for lower-field MR research in groups that already own multi-nuclei hardware and can also serve as a testing platform for custom-made multi-nuclei transmit/receive coils.

Keywords: Cine MRI; Field strength; Magnetic resonance imaging; Multiparametric MRI; Technology assessment.

MeSH terms

  • Magnetic Resonance Imaging* / methods
  • Protons
  • Software*

Substances

  • Protons