A simple new approach to variable selection in regression, with application to genetic fine mapping

J R Stat Soc Series B Stat Methodol. 2020 Dec;82(5):1273-1300. doi: 10.1111/rssb.12388. Epub 2020 Jul 10.

Abstract

We introduce a simple new approach to variable selection in linear regression, with a particular focus on quantifying uncertainty in which variables should be selected. The approach is based on a new model - the "Sum of Single Effects" (SuSiE) model - which comes from writing the sparse vector of regression coefficients as a sum of "single-effect" vectors, each with one non-zero element. We also introduce a corresponding new fitting procedure - Iterative Bayesian Stepwise Selection (IBSS) - which is a Bayesian analogue of stepwise selection methods. IBSS shares the computational simplicity and speed of traditional stepwise methods, but instead of selecting a single variable at each step, IBSS computes a distribution on variables that captures uncertainty in which variable to select. We provide a formal justification of this intuitive algorithm by showing that it optimizes a variational approximation to the posterior distribution under the SuSiE model. Further, this approximate posterior distribution naturally yields convenient novel summaries of uncertainty in variable selection, providing a Credible Set of variables for each selection. Our methods are particularly well-suited to settings where variables are highly correlated and detectable effects are sparse, both of which are characteristics of genetic fine-mapping applications. We demonstrate through numerical experiments that our methods outperform existing methods for this task, and illustrate their application to fine-mapping genetic variants influencing alternative splicing in human cell-lines. We also discuss the potential and challenges for applying these methods to generic variable selection problems.

Keywords: genetic fine-mapping; linear regression; sparse; variable selection; variational inference.