Submillisecond Atomistic Molecular Dynamics Simulations Reveal Hydrogen Bond-Driven Diffusion of a Guest Peptide in Protein-RNA Condensate

J Phys Chem B. 2024 Mar 14;128(10):2347-2359. doi: 10.1021/acs.jpcb.3c08126. Epub 2024 Feb 28.

Abstract

Liquid-liquid phase separation mediated by proteins and/or nucleic acids is believed to underlie the formation of many distinct condensed phases, or membraneless organelles, within living cells. These condensates have been proposed to orchestrate a variety of important processes. Despite recent advances, the interactions that regulate the dynamics of molecules within a condensate remain poorly understood. We performed accumulated 564.7 μs all-atom molecular dynamics (MD) simulations (system size ∼200k atoms) of model condensates formed by a scaffold RNA oligomer and a scaffold peptide rich in arginine (Arg). These model condensates contained one of three possible guest peptides: the scaffold peptide itself or a variant in which six Arg residues were replaced by lysine (Lys) or asymmetric dimethyl arginine (ADMA). We found that the Arg-rich peptide can form the largest number of hydrogen bonds and bind the strongest to the scaffold RNA in the condensate, relative to the Lys- and ADMA-rich peptides. Our MD simulations also showed that the Arg-rich peptide diffused more slowly in the condensate relative to the other two guest peptides, which is consistent with a recent fluorescence microscopy study. There was no significant increase in the number of cation-π interactions between the Arg-rich peptide and the scaffold RNA compared to the Lys-rich and ADMA-rich peptides. Our results indicate that hydrogen bonds between the peptides and the RNA backbone, rather than cation-π interactions, play a major role in regulating peptide diffusion in the condensate.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arginine / chemistry
  • Cations
  • Hydrogen Bonding
  • Lysine / chemistry
  • Molecular Dynamics Simulation*
  • Peptides / chemistry
  • Proteins
  • RNA*

Substances

  • RNA
  • Peptides
  • Proteins
  • Arginine
  • Lysine
  • Cations