The absence of efficient and durable catalysts for oxygen evolution reaction (OER) is the main obstacle to hydrogen production through water splitting in an acidic electrolyte. Here, we report a controllable synthesis method of surface IrOx with changing Au/Ir compositions by constructing a range of sub-10-nm-sized core-shell nanocatalysts composed of an Au core and AuxIr1-x alloy shell. In particular, Au@Au0.43Ir0.57 exhibits 4.5 times higher intrinsic OER activity than that of the commercial Ir/C. Synchrotron X-ray-based spectroscopies, electron microscopy and density functional theory calculations revealed a balanced binding of reaction intermediates with enhanced activity. The water-splitting cell using a load of 0.02 mgIr/cm2 of Au@Au0.43Ir0.57 as both anode and cathode can reach 10 mA/cm2 at 1.52 V and maintain activity for at least 194 h, which is better than the cell using the commercial couple Ir/C‖Pt/C (1.63 V, 0.2 h).
Keywords: acidic water splitting; catalytic stability; controllable synthesis of surface IrOx; oxygen evolution reaction; transition metal catalysts.
© The Author(s) 2024. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd.