To fuel artificial intelligence (AI) potential in clinical practice in otolaryngology, researchers must understand its epistemic limitations, which are tightly linked to ethical dilemmas requiring careful consideration. AI tools are fundamentally opaque systems, though there are methods to increase explainability and transparency. Reproducibility and replicability limitations can be overcomed by sharing computing code, raw data, and data processing methodology. The risk of bias can be mitigated via algorithmic auditing, careful consideration of the training data, and advocating for a diverse AI workforce to promote algorithmic pluralism, reflecting our population's diverse values and preferences.
Keywords: Artificial intelligence epistemology; Artificial intelligence ethics; Artificial intelligence governance; Bias; Explainability.
Copyright © 2024 Elsevier Inc. All rights reserved.