Introduction: The immune receptor triggering receptor expressed on myeloid cells 2 (TREM2) is among the strongest genetic risk factors for Alzheimer's disease (AD) and is a therapeutic target. TREM2 multimers have been identified in crystallography and implicated in the efficacy of antibody therapeutics; however, the molecular basis for TREM2 multimerization remains poorly understood.
Methods: We used molecular dynamics simulations and binding energy analysis to determine the effects of AD-associated variants on TREM2 multimerization and validated with experimental results.
Results: TREM2 trimers remained stably bound, driven primarily by salt bridge between residues D87 and R76 at the interface of TREM2 units. This salt bridge was disrupted by the AD-associated variants R47H and R98W and nearly ablated by the D87N variant. This decreased binding among TREM2 multimers was validated with co-immunoprecipitation assays.
Discussion: This study uncovers a molecular basis for TREM2 forming stable trimers and unveils a novel mechanism by which TREM2 variants may increase AD risk by disrupting TREM2 oligomerization to impair TREM2 normal function.
Highlights: Triggering receptor expressed on myeloid cells 2 (TREM2) multimerization could regulate TREM2 activation and function. D87-R76 salt bridges at the interface of TREM2 units drive the formation of stable TREM2 dimers and trimers. Alzheimer's disease (AD)-associated R47H and R98W variants disrupt the D87-R76 salt bridge. The AD-associated D87N variant leads to complete loss of the D87-R76 salt bridge.
Keywords: Alzheimer's disease–associated variants; TREM2; binding free energy analyses; experimental validation; molecular dynamics simulations; oligomerization.
© 2024 The Author(s). Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.