The specialized function and extreme geometry of neurons necessitates a unique reliance upon long-distance microtubule-based transport. Appropriate trafficking of axonal cargos by motor proteins is essential for establishing circuitry during development and continuing function throughout a lifespan. Visualizing and quantifying cargo movement provides valuable insight into how axonal organelles are replenished, recycled, and degraded during the dynamic dance of outgoing and incoming axonal traffic. Long-distance axonal trafficking is of particular importance as it encompasses a pathway commonly disrupted in developmental and degenerative disease states. Here, we describe neuronal organelles and outline methods for live imaging and quantifying their movement throughout the axon via transient expression of fluorescently labeled organelle markers. This resource provides recommendations for target proteins/domains and appropriate acquisition time scales for visualizing distinct neuronal cargos in cultured neurons derived from human induced pluripotent stem cells (iPSCs) and primary rat neurons.
Keywords: Axonal transport; Live imaging; Organelle movement; Primary neuron; Trafficking; Transfection; iPSC-derived neuron.
© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.