Heme promotes venetoclax resistance in multiple myeloma through MEK-ERK signaling and purine biosynthesis

Blood. 2025 Feb 13;145(7):732-747. doi: 10.1182/blood.2024025690.

Abstract

We previously demonstrated that reduced intrinsic electron transport chain (ETC) activity predicts and promotes sensitivity to the B-cell lymphoma 2 (BCL-2) antagonist, venetoclax (Ven), in multiple myeloma (MM). Heme, an iron-containing prosthetic group and metabolite, is fundamental to maintaining ETC activity. Interrogation of the cyclin D1 group 2 subgroup of MM from the Relating Clinical Outcomes in MM to Personal Assessment of Genetic Profile (CoMMpass) trial (NCT01454297), which can be used as a proxy for Ven-sensitive MM (VS MM), shows reduced expression of the conserved heme biosynthesis pathway gene signature. Consistent with this, we identified that VS MM exhibits reduced heme biosynthesis and curiously elevated hemin (oxidized heme) uptake. Supplementation with hemin or protoporphyrin IX (heme lacking iron) promotes Ven resistance, whereas targeting ferrochetalase, the penultimate enzyme involved in heme biosynthesis, increases Ven sensitivity in cell lines and primary MM cells. Mechanistically, heme-mediated activation of prosurvival rapidly accelerated fibrosarcoma-rat sarcoma virus-mitogen-activated protein kinase (MEK) signaling and metabolic rewiring, increasing de novo purine synthesis, were found to contribute to heme-induced Ven resistance. Cotargeting BCL-2 and myeloid cell leukemia-1 suppresses heme-induced Ven resistance. Interrogation of the Multiple Myeloma Research Foundation CoMMpass study of patients shows increased purine and pyrimidine biosynthesis to corelate with poor progression-free survival and overall survival. Elevated heme and purine biosynthesis gene signatures were also observed in matched relapse refractory MM, underscoring the relevance of heme metabolism in therapy-refractory MM. Overall, our findings reveal, for the first time, a role for extrinsic heme, a physiologically relevant metabolite, in modulating proximity to the apoptotic threshold with translational implications for BCL-2 antagonism in MM therapy.

MeSH terms

  • Antineoplastic Agents* / pharmacology
  • Antineoplastic Agents* / therapeutic use
  • Bridged Bicyclo Compounds, Heterocyclic* / pharmacology
  • Bridged Bicyclo Compounds, Heterocyclic* / therapeutic use
  • Cell Line, Tumor
  • Drug Resistance, Neoplasm* / drug effects
  • Heme* / metabolism
  • Heme* / pharmacology
  • Humans
  • MAP Kinase Signaling System* / drug effects
  • Multiple Myeloma* / drug therapy
  • Multiple Myeloma* / genetics
  • Multiple Myeloma* / metabolism
  • Multiple Myeloma* / pathology
  • Purines* / biosynthesis
  • Sulfonamides* / pharmacology
  • Sulfonamides* / therapeutic use

Substances

  • venetoclax
  • Heme
  • Bridged Bicyclo Compounds, Heterocyclic
  • Sulfonamides
  • Purines
  • Antineoplastic Agents
  • purine