Design and synthesis of antiproliferative 2-oxoindolin-3-ylidenes incorporating urea function with potential VEGFR-2 inhibitory properties

Sci Rep. 2025 Jan 3;15(1):618. doi: 10.1038/s41598-024-82005-6.

Abstract

Targeted therapy is preferable over other therapeutics due to its limitation of drawbacks and better pharmaceutical outcomes. VEGF and its receptors have been observed to be hyper-activated in many cancer types and are considered promising targets for assigning anticancer agents. The current study is directed towards synthesis of novel antiproliferative 2-oxoindolin-3-ylidenes incorporating urea function with VEGFR-2 properties. The targeted agents were obtained through a two-step reaction. Addition of the appropriate 1-(acetylphenyl)-3-phenylurea 9a,b to the corresponding isatin 10a-f in ethanol containing a quantitative amount of Et2NH followed by acidic dehydration (AcOH/HCl) afforded the targeted agents 12a-j. Promising antiproliferation properties (MTT assay) were observed for most of the synthesized agents against HCT116 (colon), MCF7 (breast) and PaCa2 (pancreatic) cancer cell lines relative to sunitinib. VEGFR-2 inhibitory properties are consistent with the antiproliferation properties exhibited against the tested cell lines. Compound 12b (R = 4-NHCONHPh, R' = H; % inhibition = 87.2) is the most promising/potent anti-VEGFR-2 agent synthesized with activity close to that of sunitinib (% inhibition = 89.4) at 10 μM. Molecular docking studies (PDB: 3WZE and 3AGD) support the antiproliferation effects against cancer cell lines tested with VEGFR-2 inhibitory properties. The results are consistent with collaboration of the pharmacophores considered (2-oxoindolyl heterocycle and urea) in improving the bio-properties.

Keywords: 2-Oxoindolin-3-ylidenes; Cancer; Molecular modeling; VEGFR-2.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents* / chemical synthesis
  • Antineoplastic Agents* / chemistry
  • Antineoplastic Agents* / pharmacology
  • Cell Line, Tumor
  • Cell Proliferation* / drug effects
  • Drug Design*
  • HCT116 Cells
  • Humans
  • Indoles / chemical synthesis
  • Indoles / chemistry
  • Indoles / pharmacology
  • MCF-7 Cells
  • Molecular Docking Simulation*
  • Protein Kinase Inhibitors / chemical synthesis
  • Protein Kinase Inhibitors / chemistry
  • Protein Kinase Inhibitors / pharmacology
  • Structure-Activity Relationship
  • Urea* / analogs & derivatives
  • Urea* / chemical synthesis
  • Urea* / chemistry
  • Urea* / pharmacology
  • Vascular Endothelial Growth Factor Receptor-2* / antagonists & inhibitors
  • Vascular Endothelial Growth Factor Receptor-2* / metabolism

Substances

  • Vascular Endothelial Growth Factor Receptor-2
  • Urea
  • Antineoplastic Agents
  • Indoles
  • Protein Kinase Inhibitors
  • KDR protein, human