Nitrogen-doping-induced electron spin polarization activates scandium oxide as high-performance zinc-air battery cathode

J Colloid Interface Sci. 2025 May 15:686:96-106. doi: 10.1016/j.jcis.2025.01.223. Epub 2025 Jan 26.

Abstract

Platinum (Pt) is the most active catalyst for the oxygen reduction reaction (ORR). However, the scarcity, high cost, and susceptibility to deactivation of Pt constrain its large-scale applications. Transition metal oxide (TMO) materials have emerged as promising alternatives due to their abundant availability and catalytic potential. Herein, we report a dissolution-and-carbonization strategy to synthesize a carbon-supported nitrogen-doped Sc2O3 catalyst (N-Sc2O3/C). Nitrogen doping significantly enhances the conductivity of the otherwise poor-conductivity Sc2O3, transforming it into a superior ORR catalyst. The synthesized N-Sc2O3/C exhibits remarkable ORR performance in 0.1 M KOH, achieving a half-wave potential of 0.92 V, which is 55 mV higher than the state-of-the-art commercial Pt/C (0.87 V). Moreover, as a cathode for a zinc-air battery, N-Sc2O3/C achieves a peak power density of 150.7 mW cm-2 and a specific capacity of 766.4 mAh gZn-1. Density functional theory calculations reveal that nitrogen doping induces electron spin polarization within Sc2O3, narrowing the bandgap. This enhanced electronic structure improves conductivity and optimizes the adsorption of oxygen intermediates, thereby facilitating the ORR process. Our study demonstrates that nitrogen doping activates the wide-bandgap Sc2O3 semiconductor, converting it into a highly efficient ORR electrocatalyst and highlighting the potential of wide-bandgap TMO materials in energy applications.

Keywords: Nitrogen doping; Oxygen reduction reaction; Scandium oxide; Transition metal oxide; Zinc-air battery.