Background: It remains controversial whether lipids affect osteoporosis (OP) or bone mineral density (BMD), and causality has not been established. This study aimed to investigate the genetic associations between lipids, novel non-statin lipid-lowering drug target genes, and OP and BMD.
Methods: Mendelian randomization (MR) method was used to explore the genetic associations between 179 lipid species and OP, BMD. Drug-target MR analysis was used to explore the causal associations between angiopoietin-like protein 3 (ANGPTL3) and apolipoprotein C3 (APOC3) inhibitors on BMD.
Results: The IVW results with Bonferroni correction indicated that triglyceride (TG) (51:3) (OR = 1.0029; 95% CI: 1.0014-1.0045; P = 0.0002) and TG (56:6) (OR = 1.0021; 95% CI: 1.0008-1.0033; P = 0.0011) were associated with an increased risk of OP; TG (51:2) (OR = 0.9543; 95% CI: 0.9148-0.9954; P = 0.0298) was associated with decreased BMD; and ANGPTL3 inhibitor (OR = 1.1342; 95% CI: 1.0393-1.2290; P = 0.0093) and APOC3 inhibitor (OR = 1.0506; 95% CI: 1.0155-1.0857; P = 0.0058) was associated with increased BMD.
Conclusions: MR analysis indicated causal associations between genetically predicted TGs and OP and BMD. Drug-target MR analysis showed that ANGPTL3 and APOC3 have the potential to serve as novel non-statin lipid-lowering drug targets to treat or prevent OP.
Keywords: ANGPTL3; APOC3; Bone mineral density; Drug target Mendelian randomization; Lipids; Osteoporosis.
© 2025. The Author(s).