The p53 Y220C mutation, a prevalent structural variant in human cancers, compromises DNA binding and tumor suppressor functions by destabilizing the protein structure. Leveraging a combined approach of structure-based virtual screening, molecular dynamics simulations, and in vitro assays, we have identified C8, a racemic compound with an indole core and α, β-unsaturated carbonyl groups, as a covalent stabilizer for p53 Y220C. Protein thermal shift and homogeneous time-resolved fluorescence assays confirmed that C8 and its analogs selectively bind to p53 Y220C and restore its DNA binding ability. Subsequent molecular dynamics simulations and structure-activity relationship analyses showed that both enantiomers of C8 form covalent bonds with Cys124 and Cys220, stabilizing the mutant structure. C8 and its analogs emerge as promising lead candidates for restoring the Y220C mutant's transcriptional function, highlights the potential of this scaffold for further optimization into p53 Y220C-targeted therapeutics.
Keywords: Cancer therapy; Covalent stabilizer; DNA binding; Molecular dynamics; Structure–activity relationship; Virtual screening; p53 Y220C.
© 2025. The Author(s), under exclusive licence to Springer Nature Switzerland AG.