Magnetotactic bacteria (MTB), known for their precision in navigating along magnetic fields, also exhibit light-sensitive behaviors. In Magnetospirillum magneticum AMB-1, the photoreceptor Amb2291 is involved in phototaxis regulation and magnetosome synthesis, particularly under oxidative stress. The magnetoreceptor Amb0994 modulates flagellar activity in response to magnetic field changes. Our study used a magneto-optical system to analyze the U-turn motility of north-seeking AMB-1 wild type (WT), amb2291 and amb0994 mutants under reversed magnetic fields and controlled light conditions. The results showed that WT strains consistently executed U-turns in response to magnetic fields, regardless of light variations. The diameters of U-turn of amb0994 mutant were smaller than those of the WT control. When illuminated with blue light in a direction opposite to the magnetic field, Δamb0994 exhibited slower U-turns with diameters similar to WT. In contrast, the Δamb2291 strain exhibited exaggerated U-turn movements under blue light, characterized by larger movement diameters and times compared to the WT, particularly whatever the light propagation direction is the same or opposite to the magnetic field in the initial state of motility. Gene expression analysis revealed that long-term exposure to blue light and magnetic fields led to a significant upregulation of amb2291 in Δamb0994 mutant strains and amb0994 in Δamb2291 mutant strains. These indicate a potential cooperative role of amb2291 and amb0994 in modulating bacterial motility under blue light. This research enhances our understanding of photoreception in MTB and its impact on magnetotaxis, shedding light on how environmental factors interact with microorganisms.
Keywords: Light; Magnetic field; Magnetic response protein; Magneto-optical sensing mechanism; Magnetotactic bacteria; Photoreceptor protein; U-turn behavior.
Copyright © 2025 Elsevier B.V. All rights reserved.