The continuous emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants highlights the need to update coronavirus 2019 disease (COVID-19) vaccine components. Epitope-based vaccine designs targeting conserved and immunorecessive regions of SARS-CoV-2 are critically needed. Here, we report an engineered epitope-focused immunogen design based on a novel horseshoe-shaped natural protein scaffold, named ribonuclease inhibitor 1 (RNH1), that can multiply display of conserved neutralizing epitopes from SARS-CoV-2 S2 stem helix. The designed immunogen RNH1-S1139 demonstrates high binding affinity to S2-specific neutralizing antibodies and elicits robust epitope-targeted antibody responses either through homologous or heterologous vaccination regimens. RNH1-S1139 immune serum has been proven to have similar binding ability against SARS-CoV, SARS-CoV-2 and its variants, providing broad-spectrum protection as a membrane fusion inhibitor. Further studies showed that RNH1 has the potential to serve as a versatile scaffold that displays other helical epitopes from various antigens, including respiratory syncytial virus (RSV) F glycoprotein. Our proposed immunogen engineering strategy via tailored horseshoe-shape nano-scaffold supports the continued development of epitope-focused vaccines as part of a next-generation vaccine design.
Keywords: Epitope-focused vaccine; Horseshoe-shaped scaffold; Immunogen design; SARS-CoV-2.
© 2025. The Author(s).