Stochastically Broken Inversion Symmetry of Van der Waals Topological Insulator for Nanoscale Physically Unclonable Functions

Adv Mater. 2025 Apr;37(13):e2419927. doi: 10.1002/adma.202419927. Epub 2025 Feb 18.

Abstract

Owing to the exotic state of quantum matter, topological insulators have emerged as a significant platform for new-generation functional devices. Among these topological insulators, tetradymites have received significant attention because of their van der Waals (vdW) structures and inversion symmetries. Although this inversion symmetry completely blocks exotic quantum phenomena, it should be broken down to facilitate versatile topological functionalities. Recently, a Janus structure is suggested for asymmetric out-of-plane lattice structures, terminating the heterogeneous atoms at two sides of the vdW structure. However, the synthesis of Janus structures has not been achieved commercially because of the imprecise control of the layer-by-layer growth, high-temperature synthesis, and low yield. To overcome these limitations, plasma sulfurization of vdW topological insulators has been presented, enabling stochastic inversion asymmetry. To take practical advantage of the random lattice distortion, physically unclonable functions (PUFs) have been suggested as applications of vdW Janus topological insulators. The sulfur dominance is experimentally demonstrated via X-ray photoelectron spectroscopy, hysteresis variation, cross-sectional transmission electron microscopy, and adhesion energy variation. In conclusion, it is envisioned that the vdW Janus topological insulators can provide an extendable encryption platform for randomized lattice distortion, offering on-demand stochastic inversion asymmetry via a single-step plasma sulfurization.

Keywords: out‐of‐plane polarization; physically unclonable functions; piezoelectric force microscopy; plasma sulfurization; topological insulator.