Seq-Scope-eXpanded: Spatial Omics Beyond Optical Resolution

bioRxiv [Preprint]. 2025 Feb 8:2025.02.04.636355. doi: 10.1101/2025.02.04.636355.

Abstract

Sequencing-based spatial transcriptomics (sST) enables transcriptome-wide gene expression mapping but falls short of reaching the optical resolution (200-300 nm) of imaging-based methods. Here, we present Seq-Scope-X (Seq-Scope-eXpanded), which empowers submicrometer-resolution Seq-Scope with tissue expansion to surpass this limitation. By physically enlarging tissues, Seq-Scope-X minimizes transcript diffusion effects and increases spatial feature density by an additional order of magnitude. In liver tissue, this approach resolves nuclear and cytoplasmic compartments in nearly every single cell, uncovering widespread differences between nuclear and cytoplasmic transcriptome patterns. Independently confirmed by imaging-based methods, these results suggest that individual hepatocytes can dynamically switch their metabolic roles. Seq-Scope-X is also applicable to non-hepatic tissues such as brain and colon, and can be modified to perform spatial proteomic analysis, simultaneously profiling hundreds of barcode-tagged antibody stains at microscopic resolutions in mouse spleens and human tonsils. These findings establish Seq-Scope-X as a transformative tool for ultra-high-resolution whole-transcriptome and proteome profiling, offering unparalleled spatial precision and advancing our understanding of cellular architecture, function, and disease mechanisms.

Publication types

  • Preprint