Altered hemodynamics is a key factor for atherosclerosis. For decades, endothelial cell (EC) responses to fluid-generated wall shear stress have been the central focus for atherogenesis. However, circulating blood is not a cell-free fluid, it contains mechanosensitive red blood cells (RBCs) that are also subjected to altered hemodynamics and release a large amount of ATP, but their impact on atherosclerosis has been overlooked. The focus of this study is the role of shear stress (SS)-induced RBC-released ATP in atherosclerosis. Hypercholesterolemic mouse models with and without RBC-Pannexin 1 deletion were used for the study. Results showed that SS-induced release of ATP from RBCs was at µM concentrations, three-orders of magnitude higher than that from other cell types. Suppression of RBC-released ATP via deletion of Pannexin 1, a mechanosensitive ATP-permeable channel, reduced high-fat diet-induced aortic plaque burden by 40%-60%. Importantly, the location and the extent of aortic atherosclerotic lesions spatially matched with the ATP deposition profile at aortic wall predicted by a computational fluid dynamic (CFD) model. Furthermore, hypercholesterolemia increases EC susceptibility to ATP with potentiated increase in [Ca2+]i, an initial signaling for aortic EC barrier dysfunction, and an essential cause for lipid accumulation and inflammatory cell infiltration. The computational prediction also provides a physics-based explanation for RBC-released ATP-induced sex disparities in atherosclerosis. Our study reveals an important role of RBC-released ATP in the initiation and progression of atherosclerosis. These novel findings provide a more comprehensive view of how altered hemodynamics and systemic risk factors synergistically contribute to atherosclerosis.NEW & NOTEWORTHY This study reveals that, in addition to fluid-derived wall shear stress, the disturbed blood flow-induced release of ATP from mechanosensitive red blood cells (RBCs), the major cellular components of blood, along with hypercholesterolemia-induced increases in endothelial cell susceptibility to ATP contribute significantly to the initiation and progression of atherosclerosis. These novel findings advance our current understanding of how altered hemodynamics and hypercholesterolemia synergistically contribute to atherosclerosis for the first time with the inclusion of RBCs.
Keywords: atherosclerosis; disturbed blood flow; endothelial cell [Ca2+]I; red blood cell-released ATP; shear stress.