Atomic Symbiotic-Catalyst for Low-Temperature Zinc-Air Battery

Angew Chem Int Ed Engl. 2025 Apr 25;64(18):e202501649. doi: 10.1002/anie.202501649. Epub 2025 Mar 5.

Abstract

Atomic-level designed electrocatalysts, including single-/dual-atom catalysts, have attracted extensive interests due to their maximized atom utilization efficiency and increased activity. Herein, a new electrocatalyst system termed as "atomic symbiotic-catalyst", that marries the advantages of typical single-/dual-atom catalysts while addressing their respective weaknesses, was proposed. In atomic symbiotic-catalyst, single-atom MNx and local carbon defects formed under a specific thermodynamic condition, act synergistically to achieve high electrocatalytic activity and battery efficiency. This symbiotic-catalyst shows greater structural precision and preparation accessibility than those of dual-atom catalysts owing to its reduced complexity in chemical space. Meanwhile, it outperforms the intrinsic activities of conventional single-atom catalysts due to multi-active-sites synergistic effect. As a proof-of-concept study, an atomic symbiotic-catalyst comprising single-atom MnN4 moieties and abundant sp3-hybridized carbon defects was constructed for low-temperature zinc-air battery, which exhibited a high peak power density of 76 mW cm-2 with long-term stability at -40 °C, representing a top-level performance of such batteries.

Keywords: atomic symbiotic-catalyst; low-temperature Zn-air battery; oxygen reduction reaction; synergistic effect.