Purpose: Targeted tumor delivery may be required to potentiate the clinical benefit of innate immune modulators. The objective of the study was to apply an antibody-drug conjugate (ADC) approach to STING agonism and develop a clinical candidate.
Experimental design: XMT-2056, a HER2-directed STING agonist ADC, was designed, synthesized, and tested in pharmacology and toxicology studies. The ADC was compared with a clinical benchmark intravenously administered a STING agonist.
Results: XMT-2056 achieved tumor-targeted delivery of the STING agonist upon systemic administration in mice and induced innate antitumor immune responses; single dose administration of XMT-2056 induced tumor regression in a variety of tumor models with high and low HER2 expressions. Notably, XMT-2056 demonstrated superior efficacy and reduced systemic inflammation compared with a free STING agonist. XMT-2056 exhibited concomitant immune-mediated killing of HER2-negative cells specifically in the presence of HER2-positive cancer cells, supporting the potential for activity against tumors with heterogeneous HER2 expression. The antibody does not compete for binding with trastuzumab or pertuzumab, and a benefit was observed when combining XMT-2056 with each of these therapies as well as with trastuzumab deruxtecan ADC. The combination of XMT-2056 with anti-PD-1 conferred benefit on antitumor activity and induced immunologic memory. XMT-2056 was well tolerated in nonclinical toxicology studies.
Conclusions: These data provide a robust preclinical characterization of XMT-2056 and provide rationale and strategy for its clinical evaluation.
©2025 The Authors; Published by the American Association for Cancer Research.