Background: Subclinical depression (ScD), serving as a significant precursor to depression, is a prevalent condition in college students and imposes a substantial health service burden. However, the brain network topology of ScD remains poorly understood, impeding our comprehension of the neuropathology underlying ScD.
Methods: Functional networks of individuals with ScD (n = 26) and healthy controls (HCs) (n = 33) were constructed based on functional magnetic resonance imaging data. These networks were then optimized using a small-worldness and modular similarity-based network thresholding method to ensure the robustness of functional networks. Subsequently, graph-theoretic methods were employed to investigated both global and nodal topological metrics of these functional networks.
Results: Compared to HCs, individuals with ScD exhibited significantly higher characteristic path length, clustering coefficient, and local efficiency, as well as a significantly lower global efficiency. Additionally, significantly lower nodal centrality metrics were found in the default mode network (DMN) regions (anterior cingulate cortex, superior frontal gyrus, precuneus) and occipital lobe in ScD, and the nodal efficiency of the left precuneus was negatively correlated with the severity of depression.
Conclusions: Altered global metrics indicate a disrupted small-world architecture and a typical shift toward regular configuration of functional networks in ScD, which may result in lower efficiency of information transmission in the brain of ScD. Moreover, lower nodal centrality in DMN regions suggest that DMN dysfunction is a neuroimaging characteristic shared by both ScD and major depressive disorder, and might serve as a vital factor promoting the development of depression.
Keywords: Default mode network; Functional magnetic resonance imaging; Functional network; Graph theory; Subclinical depression.
© 2025. The Author(s).