Aims/hypothesis: Components of the insulin processing and secretion pathways remain incompletely understood. Here, we examined a genome-wide association study (GWAS) signal for plasma proinsulin levels. Lead GWAS variant rs150781447-T encodes an Arg279Cys substitution in TBC1 domain family member 30 (TBC1D30), but no role for this protein in insulin processing or secretion has been established previously. This study aimed to evaluate whether TBC1D30 drives the GWAS association signal by determining whether TBC1D30 is involved in proinsulin secretion and, if so, to examine the effects of variant alleles and potential mechanisms.
Methods: Using CRISPR/Cas9 genome editing to create double-strand breaks and prime editing to install substitutions in INS1 832/13 insulinoma cells, we generated clonal cell lines with altered TBC1D30, as well as homozygous and heterozygous lines carrying the lead GWAS variant. We characterised lines by Sanger sequencing, quantitative PCR and ELISAs to measure glucose-stimulated proinsulin and insulin secretion. We also tested the effects of TBC1D30 knockdown on proinsulin and insulin secretion in human islets. We further assessed TBC1D30's contribution to secretory pathways by examining the effects of altered gene function on intracellular proinsulin and insulin content and insulin localisation, and by identifying potential proteins that interact with TBC1D30 using affinity purification mass spectrometry.
Results: Compared with mock-edited cells, cell lines with reduced TBC1D30 expression or altered Rab GTPase-activating protein (RabGAP) domain had significantly more secreted proinsulin, 1.8- and 2.6-fold more than controls, respectively. Similarly, cells expressing the variant substitution demonstrated increased proinsulin secretion. Cell lines with a partial deletion of a critical functional domain showed 1.8-fold higher expression of Tbc1d30 and at least 2.0-fold less secreted proinsulin. Cells with altered RabGAP domain sequence also demonstrated, to a lesser extent, changes in secreted insulin levels. TBC1D30 knockdown in human islets resulted in increased insulin secretion with no significant effect on proinsulin secretion. The effects of altered TBC1D30 on mislocalisation of insulin, intracellular proinsulin and insulin content and the identities of interacting proteins are consistent with a role for TBC1D30 in proinsulin and insulin secretion.
Conclusions/interpretation: These findings suggest that effects on TBC1D30 are responsible for the GWAS signal and that TBC1D30 plays a critical role in the secretion of mature insulin.
Keywords: CRISPR; Genome editing; Genome-wide association study; Insulin; Islets; Prime editing; Proinsulin.
© 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.