Background: RNA-binding proteins (RBPs) are essential in cardiac development. However, a large of them have not been characterized during the process.
Methods: We applied the human embryonic stem cells (hESCs) differentiated into cardiomyocytes model and constructed SAMD4A-knockdown/overexpression hESCs to investigate the role of SAMD4A in cardiomyocyte lineage specification.
Results: SAMD4A, an RBP, exhibits increased expression during early heart development. Suppression of SAMD4A inhibits the proliferation of hESCs, impedes cardiac mesoderm differentiation, and impairs the function of hESC-derived cardiomyocytes. Correspondingly, forced expression of SAMD4A enhances proliferation and promotes cardiomyogenesis. Mechanistically, SAMD4A specifically binds to FGF2 via a specific CNGG/CNGGN motif, stabilizing its mRNA and enhancing translation, thereby upregulating FGF2 expression, which subsequently modulates the AKT signaling pathway and regulates cardiomyocyte lineage differentiation. Additionally, supplementation of FGF2 can rescue the proliferation defect of hESCs in the absence of SAMD4A.
Conclusions: Our study demonstrates that SAMD4A orchestrates cardiomyocyte lineage commitment through the post-transcriptional regulation of FGF2 and modulation of AKT signaling. These findings not only underscore the essential role of SAMD4A in cardiac organogenesis, but also provide critical insights into the molecular mechanisms underlying heart development, thereby informing potential therapeutic strategies for congenital heart disease.
Keywords: Cardiomyocyte differentiation; FGF2; FGFR2; RNA-binding protein; SAMD4A; Stem cell.
© 2025. The Author(s).