Objective: Malaria remains a leading cause of global morbidity and mortality, responsible for approximately 5,97,000 deaths according to World Malaria Report 2024. The study aims to systematically review current methodologies for automated analysis of the Plasmodium genus in malaria diagnostics. Specifically, it focuses on computer-assisted methods, examining databases, blood smear types, staining techniques, and diagnostic models used for malaria characterization while identifying the limitations and contributions of recent studies.
Methods: A systematic literature review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Peer-reviewed and published studies from 2020 to 2024 were retrieved from Web of Science and Scopus. Inclusion criteria focused on studies utilizing deep learning and machine learning models for automated malaria detection from microscopic blood smears. The review considered various blood smear types, staining techniques, and diagnostic models, providing a comprehensive evaluation of the automated diagnostic landscape for malaria.
Results: The NIH database is the standardized and most widely tested database for malaria diagnostics. Giemsa stained-thin blood smear is the most efficient diagnostic method for the detection and observation of the plasmodium lifecycle. This study has been able to identify three categories of ML models most suitable for digital diagnostic of malaria, i.e., Most Accurate- ResNet and VGG with peak accuracy of 99.12 %, Most Popular- custom CNN-based models used by 58 % of studies, and least complex- CADx model. A few pre and post-processing techniques like Gaussian filter and auto encoder for noise reduction have also been discussed for improved accuracy of models.
Conclusion: Automated methods for malaria diagnostics show considerable promise in improving diagnostic accuracy and reducing human error. While deep learning models have demonstrated high performance, challenges remain in data standardization and real-world application. Addressing these gaps could lead to more reliable and scalable diagnostic tools, aiding global malaria control efforts.
Keywords: Artificial intelligence; Deep learning; Machine learning; Malaria; PRISMA; Plasmodium spp; Thin & thick blood smear; VOS Viewer.
Copyright © 2025 Elsevier B.V. All rights reserved.