Immunotherapy shows remarkable benefits in treating melanoma, yet existing approaches achieve limited overall responses. Here, we show that a combination of bromodomain and extra-terminal protein family inhibitor, NHWD-870, and Bacillus Calmette-Guérin vaccine is a promising therapeutic strategy for melanomas. Single-cell transcriptome analyses and functional experiments show that the combination therapy significantly inhibited tumor growth by reprogramming T cells toward an immune-activated state, enhancing their cytotoxicity, preventing their exhaustion, and increasing the recruitment of them into the tumor microenvironment. We identify the molecule, MT1, as a direct downstream target of BRD4, which is effectively suppressed by NHWD-870. Furthermore, our findings are reinforced by a humanized patient-derived xenograft (PDX) model, which exhibits notable antitumor effects in humanized tumor-bearing mice treated with the combination therapy. Our study underscores the immense potential of this therapeutic approach for clinical practice, offering promising prospects in overcoming the limitations of current treatments.
Keywords: BCG; BET inhibitor; Melanoma; Metallothionein 1; T cell reprogramming; Tumor microenvironment.
Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.