Diabetes is a major risk factor for cardiovascular diseases. Patients with diabetes are at greater risk for morbidity and mortality post myocardial infarction. As the epidemic of diabetes continues at an alarming pace, identification of specific therapeutic interventions to protect diabetic patients from the devastating consequences of myocardial infarction is an urgent need. Advanced glycation end products (AGEs), the products of nonenzymatic glycation and oxidation of proteins and lipids, accumulate in the diabetic circulation and heart. The interaction of AGEs with its key receptor, receptor for AGE or RAGE, contributes to cardiac injury and dysfunction. The discovery that intracellular domain of RAGE binds to the formin, DIAPH1, and that DIAPH1 is essential for RAGE ligand-mediated signal transduction, unveiled the specific cellular means by which RAGE functions and highlights a new target for therapeutic interruption of pathological RAGE signaling during myocardial infarction. This review delves into intrinsic mechanisms by which AGE-RAGE axis via RAGE-DIAPH1 driven DIAPH1-Mitofusin2 (MFN2) interaction modulates pathogenic inter-organelle communications and opens opportunities for intensive studies to uncover the comprehensive mechanisms that drive injury-provoking actions from the intracellular space. This review illustrates the potential therapeutic cardioprotective benefits of antagonism of RAGE-DIAPH1interactions in the diabetic heart.