Real-life benefit of artificial intelligence-based fracture detection in a pediatric emergency department

Eur Radiol. 2025 Apr 7. doi: 10.1007/s00330-025-11554-9. Online ahead of print.

Abstract

Objectives: This study aimed to evaluate the performance of an artificial intelligence (AI)-based software for fracture detection in pediatric patients within a real-life clinical setting. Specifically, it sought to assess (1) the stand-alone AI performance in real-life cohort and in selected set of medicolegal relevant fractures and (2) its influence on the diagnostic performance of inexperienced emergency room physicians.

Materials and methods: The retrospective study involved 1672 radiographs of children under 18 years, obtained consecutively (real-life cohort) and selective (medicolegal cohort) in a tertiary pediatric emergency department. On these images, the stand-alone performance of a commercially available, deep learning-based software was determined. Additionally, three pediatric residents independently reviewed the radiographs before and after AI assistance, and the impact on their diagnostic accuracy was assessed.

Results: In our cohort (median age 10.9 years, 59% male), the AI demonstrated a sensitivity of 92%, specificity of 83%, and accuracy of 87%. For medicolegally relevant fractures, the AI achieved a sensitivity of 100% for proximal tibia fractures, but only 68% for radial condyle fractures. AI assistance improved the residents' patient-wise sensitivity from 84 to 87%, specificity from 91 to 92%, and diagnostic accuracy from 88 to 90%. In 2% of cases, the readers, with the assistance of AI, erroneously discarded their correct diagnosis.

Conclusion: The AI exhibited strong stand-alone performance in a pediatric setting and can modestly enhance the diagnostic accuracy of inexperienced physicians. However, the economic implications must be weighed against the potential benefits in patient safety.

Key points: Question Does an artificial intelligence-based software for fracture detection influence inexperienced physicians in a real-life pediatric trauma population? Findings Addition of a well-performing artificial intelligence-based software led to a limited increase in diagnostic accuracy of inexperienced human readers. Clinical relevance Diagnosing fractures in children is especially challenging for less experienced physicians. High-performing artificial intelligence-based software as a "second set of eyes," enhances diagnostic accuracy in a common pediatric emergency room setting.

Keywords: Appendicular skeleton; Artificial intelligence; Fracture; Medicolegal; Pediatric.