Synaptic dysfunction has been implicated as a key mechanism underlying the pathophysiology of psychiatric disorders. Most pharmacological therapeutics for schizophrenia, autism spectrum disorder, obsessive-compulsive disorder, and major depressive disorder temporarily augment chemical synapse function. Nevertheless, medication non-compliance is a major clinical challenge, and behavioral dysfunction often returns following pharmacotherapeutic discontinuation. Here, we deployed a designer electrical synapse to edit a single class of chemical synapses in a genetic mouse model of obsessive-compulsive disorder (OCD). Editing these synapses in juvenile mice normalized circuit function and prevented the emergence of pathological repetitive behavior in adulthood. Thus, we establish precision circuit editing as a putative strategy for preventative psychotherapeutics.
Keywords: Circuit-editing; Obsessive-compulsive disorder; Synapse; compulsivity; cortex; inhibitory; striatum.