Acute kidney injury (AKI) is a common condition linked to increased morbidity, mortality, and substantial health care costs both in the United States and globally. Early diagnosis, prompt intervention, and effective therapeutic management of AKI are vital for improving patient outcomes. Recent advancements in renal imaging and omics technologies have provided new perspectives and deeper insights into kidney injury while also presenting challenges in developing a comprehensive cellular and molecular atlas of the condition. This review focuses on the application of mass spectrometry imaging-based spatial metabolomics in studying ischemia- and toxin-induced AKI in animal models and human patients. Spatial metabolomics offers a deeper understanding of the pathophysiological connections between various processes, such as dysregulated lipid metabolism and the shift from the tricarboxylic acid cycle to glycolytic flux, which contribute to functional impairment and structural damage in AKI. Continued research in renal multimodal imaging and omics is essential to further our understanding of kidney injury from diagnostic, mechanistic, and therapeutic perspectives.
Keywords: Acute kidney injury; glycolytic flux; lipid metabolism; mass spectrometry imaging; spatial metabolomics.
Copyright © 2025 Elsevier Inc. All rights reserved.