Flexible behavior depends on abstract rules to generalize beyond specific instances and outcome monitoring to adjust actions. Cortical circuits are posited to read out rules from high-dimensional representations of task-relevant variables in prefrontal cortex (PFC). We instead hypothesized that converging inputs from PFC, directly or via basal ganglia (BGs), enable the thalamus to select rules. We measured activity across PFC and connected thalamic nuclei of monkeys applying rules. Abstract rule information first appeared in ventroanterior thalamus (VA)-the main thalamic hub between BG and PFC. Mediodorsal thalamus (MD) also represented rule information before PFC, persisting to help maintain activation of relevant PFC cell ensembles. MD, a major recipient of midbrain dopamine input, was the first to represent information about behavioral outcomes. A PFC-BG-thalamus model reproduced key findings, and thalamic-lesion modeling disrupted PFC rule representations. This suggests that the thalamus selects high-level cognitive information from PFC and monitors behavioral outcomes of these selections.
Keywords: basal ganglia; cognitive control; corticothalamic; executive functions; model; outcome monitoring; prefrontal cortex; thalamocortical; thalamus.
Copyright © 2025 Elsevier Inc. All rights reserved.