Genus Artemisia has diverse phytochemistry and a long history in traditional medicine with several species still having unexplored potential. Hence, comparative profiling of Artemisia species in Egypt (A. annua, A. herba-alba, A. monosperma and A. judaica) and their authentication is of great interest. An integrated approach of GC-MS, HPTLC-image analysis and near-infrared (NIR) spectroscopy was implemented for their fingerprinting, discrimination and authentication. GC-MS analysis revealed the phytochemical profile of their volatile oils identifying compounds spanning monoterpenes, sesquiterpenes, diterpenes and non-terpenoid compounds. The major chemical components were highlighted as camphor, β-caryophyllene and germacrene D in A. annua, camphene, cis-pinocarveol, trans-chrysanthenyl acetate and cis-chrysanthenyl acetate in A. herba-alba, α-pinene, β-pinene, α-terpinolene and (-)-spathulenol in A. monosperma, finally, camphor, piperitone and trans-ethyl cinnamate in A. judaica. HPTLC-image analysis allowed tracking chemical markers in their total alcoholic extracts. Artemisinin was detected only in A. annua while scopoletin was identified as a major characteristic coumarin in Artemisia species. Phenolic acids and flavonoids were also discovered in the different species. Finally, NIR spectroscopy allowed profiling and authentication of their powders revealing prominent spectral characteristics correlated to the chemical markers identified by GC-MS and HPTLC. Then, multivariate analysis facilitated classification and discrimination of the species. Additionally, PLS regression analysis was utilized for quality control of powdered A. annua, being an important industrial crop, by detecting its adulteration with other species in limits of detection less than 1.5%. This combined approach aided in the rapid comparative profiling of the Artemisia species as a mean for their fingerprinting and authentication.
Keywords: Artemisia annua; Artemisia herba-alba; Artemisia judaica; Artemisia monosperma; Adulteration; Multivariate analysis; Phytochemical profile.
© 2025. The Author(s).