Background: Inflammation plays a key role in various diseases such as pancreatitis, cancer, and rheumatoid arthritis. Acute inflammation involves processes like vasodilation, increased vascular permeability, and leukocyte accumulation, which lead to cellular damage due to reactive oxygen species (ROS). Low-frequency electromagnetic fields (ELF-EMFs) have shown potential in reducing oxidative stress and inflammation. This study assesses the effectiveness of a new wearable device containing graphene quantum dots in reducing inflammation and oxidative stress in Jurkat T cells stimulated by lipopolysaccharide (LPS). The device is evaluated for its impact on ROS production and inflammation.
Results: The results show that the device significantly lowers ROS levels and reduces the inflammatory response by decreasing pro-inflammatory cytokines such as IL-6, TNF-α, and IL-1β. Additionally, the device inhibits LPS-induced iNOS and COX-2 activity and modulates NF-κB signaling, indicating its potential as a therapeutic tool for managing inflammation and oxidative stress.
Conclusion: These findings highlight the device's ability to combat inflammation, offering a non-invasive and effective approach for inflammatory diseases.
Keywords: Cytokines; Graphene; Inflammation; Jurkat cells; Low-frequency electromagnetic fields; Photo-biomodulation; Quantum Dot.
© 2025. The Author(s).