The field of reconstructive surgery faces significant challenges in addressing limb loss and disfigurement, with current organ preservation methods limited by short storage times. Decellularization offers a promising solution for generating engineered alternatives for reconstructive surgery by removing cellular material while preserving the extracellular matrix (ECM) and providing scaffolds for tissue regeneration. In this study, we developed a robust protocol for decellularizing whole digits from long-term freezer storage, achieving the successful removal of cellular material with intact ECM. Digit angiography confirmed the preservation of vascular integrity, facilitating future perfusion for recellularization. Quantitative analysis revealed significantly lower DNA content in decellularized tissues, indicating effective decellularization. Furthermore, extracellular matrix analysis showed the preservation of collagen, elastin, and glycosaminoglycans (GAGs) contents. Histological examination confirmed the reduction in cellularity and maintenance of tissue architecture in decellularized digits. Mechanical strength testing of decellularized digit tendons proved consistent with that of native digits. Our findings highlight the potential of decellularized digits as versatile platforms for tissue engineering and regenerative medicine. Moving forward, further optimization of protocols and collaborative efforts are essential for translating these findings into clinical practice, offering innovative solutions for reconstructive surgery and limb transplantation.
Keywords: decellularization; digits; human; rejection; transplantation; vascularized composite allografts.