Vibration-based bridge modal identification is a crucial tool in monitoring and managing transportation infrastructure. Traditionally, this entails deploying a fixed array of sensors to measure bridge responses such as accelerations, determine dynamic characteristics, and subsequently infer bridge conditions that will facilitate prognosis and decision-making. However, such a paradigm is not scalable, possesses limited spatial resolution, and typically entails high effort and cost. Recently, mobile sensing-based paradigms have demonstrated promise in laboratory and field settings as an alternative. These methods can leverage big data from crowdsourcing vibration data acquired from smartphone devices belonging to pedestrians and passengers traveling over a bridge, constituting a significantly large data stream of indirectly sensed bridge response. Although the efficacy of such a paradigm has been demonstrated for a limited set of case studies, ubiquitous implementation requires analyzing the impact of vehicle dynamics and quantifying data sources that can be used for the purpose of bridge modal identification. This paper presents a road map for achieving this through dynamically diverse datastreams such as passenger cars, buses, bikes, and scooters. Existing datastreams point towards the implementation of crowdsourced mobile sensing paradigms in urban settings, which would facilitate effective decision-making for enhanced transportation infrastructure resilience.
Keywords: bridge monitoring; crowdsourcing; mobile sensing; ride-share; smartphone; system identification.