Rolling-circle DNA replication is a DNA-duplication mechanism whereby circular DNA templates are continuously copied to produce long DNA products. It is widely used in molecular diagnostics, DNA sequencing, nanotechnology, and in vitro DNA replication studies. The efficiency of rolling-circle replication reaction heavily relies on the quality of the rolling-circle DNA template. Existing methods to create rolling-circle DNA substrates often rely on unique restriction sites and have limited control over replication fork topology and position. To address these limitations, we present a straightforward, customizable, and efficient strategy for producing rolling-circle DNA substrates with control over gap size and fork position. Our method relies on the use of nickase Cas9 (nCas9), which can be programmed to target specific DNA sequences using guide RNAs. In a one-pot reaction, we target nCas9 to four sites on an 18-kb plasmid to create 8-11-bp fragments. These fragments are removed and a flap oligo is ligated, to construct a fork with precisely controlled flap length and gap size. We demonstrate the application of this DNA substrate in an in vitro single-molecule rolling-circle DNA-replication assay. With our method, any plasmid DNA can be converted into a rolling-circle template, permitting generation of more physiologically-relevant DNA templates.
Keywords: Guide RNAs; Nickase Cas9; Nucleic-acid biochemistry; Replication; Rolling-circle DNA; Single-molecule imaging.
Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.