Executive functions, including working memory, are typically assessed clinically with neuropsychological instruments. In contrast, computerized tasks are used to test these cognitive functions in laboratory human and animal studies. Little is known of how neural activity captured by laboratory tasks relates to ability measured by clinical instruments and, by extension, clinical diagnoses of pathological conditions. We therefore sought to determine what aspects of neural activity elicited in laboratory tasks are predictive of performance in neuropsychological instruments. We recorded neural activity from intracranial electrodes implanted in human epilepsy patients as they performed laboratory working memory tasks. These patients had completed neuropsychological instruments preoperatively, including the Weschler Adult Intelligent Scale and the Wisconsin Card Sorting test. Our results revealed that increased high-gamma (70-150 Hz) power in the prefrontal and parietal cortex after presentation of visual stimuli to be remembered was indicative of lower performance in the neuropsychological tasks. On the other hand, we observed a positive correlation between high-frequency power amplitude in the delay period of the laboratory tasks and neuropsychological performance. Our results demonstrate how neural activity around task events relates to executive function and may be associated with clinical diagnosis of specific cognitive deficits.
Keywords: Local field potential; Prefrontal cortex; Stereo-EEG; working memory.
Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.